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Landauer diffusion coefficient: A classical result
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Using the classical version of theS-matrix scattering theory, we develop a stochastic process called persis-
tent random walk. We show that the one-channel Landauer diffusion coefficient can be obtained from a purely
incoherent classical theory. The time dependent mesoscopic diffusion current satisfies a Maxwell-Cattaneo
relation. Therefore the time dependent mesoscopic diffusion process is described by the telegrapher’s equation.
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I. INTRODUCTION

Since the pioneering work by Landauer@1#, who showed
the relationship between the diffusion of a noninteract
quantum mechanical system and an associated scatt
problem, several authors have given different quantum
chanical derivations of the mesoscopic diffusion coeffici
@2,3#. Landauer’s great insight, that diffusion~and conduc-
tion! in solids can be thought of as a scattering problem,
certainly been of great practical importance in guiding o
intuition to an understanding of quantum transport in me
scopic systems.

For a one-dimensional~1D! solid, the corresponding Lan
dauer diffusion coefficientD can be written as

D5cL
T

2R
, ~1!

wherec is the velocity of the particles,L is the length of the
solid, andT andR are the transmission and reflection coe
ficients of the conductor treated as a single complex sca
ing center.

Lamentably, the transport community has failed to rec
nize that Eq.~1! is a purely incoherentclassical result. In-
deed, independently of the fact that the coefficientsT andR
in Eq. ~1! may be given a classical interpretation~forward
and backward transition probabilities!, the algebraic structure
T/2R in the diffusion coefficient~1! is a very well-known
consequence of a diffusion process described by a ran
walk with inertial memory. This stochastic process, cal
one-dimensional persistent random walk~1D-PRW! in the
literature @4#, is in fact an incoherent~classical! version of
the quantumS-matrix scattering theory@5#. Next, we will
show this.

II. THE CLASSICAL 1D-PRW PROCESS

The 1D-PRW is a random process which describes a
cession of 1D elastic andincoherentscatterings in a crysta
lattice. All particles, incident upon any arbitrary lattice p
tential barrier, are scattered with forward~transmission! and
backward ~reflection! classical probabilities (t,r ), respec-
tively. Conservation of particles demandst1r 51, and if ab-
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sorption is requested then (t,r ) can be substituted by„t(1
2h),r (12h)… whereh is the probability of absorption a
each potential barrier. UsuallytÞr and this expresses th
inertial memory of particles under scattering.

Assuming the particles to be described only at the m
valleys between potential barriers, the classical 1D-PR
equations may be written relating, at timet, the classical
incoming probabilitiesP1(x,t) andP2(x11,t) with the cor-
responding outgoing onesP1(x11,t11) andP2(x,t11), at
a later timet11. The subscripts in the above probabilitie
denote the directions of motion~1 is right, 2 is left!. Using
the classical version ofS-matrix scattering theory, the evo
lution of the 1D-PRW process becomes defined by the
lowing pair of recurrence relations:

S P1~x11,t11!

P2~x,t11! D5S t r

r t D S P1~x,t !
P2~x11,t ! D . ~2!

Equation~2! describes a succession of elastic scatter
events where all particles have the same average spec
[Dx/Dt. In calculations of conductance in mesoscopic s
ids the speedc is chosen to be the Fermi velocityc[vF .
Having constant energy in 1D, the velocity has only tw
values:6c. P1(x,t) andP2(x,t) describe the joint probabil-
ity of finding the particle at a midvalley positionx at time t
with positive and negative velocities, respectively. Thus
1D-PRW process~2! describes a classical Markov proce
with internal degrees of freedom.

Notice that inelastic collisions cannot be included in th
model. The reason is that for describing diffusion in a crys
lattice, with therecursivePRW model~2!, the jump timeDt
has to be the same in every scattering process.

III. LANDAUER’S DIFFUSION COEFFICIENT
AND THE TELEGRAPHER EQUATION

To find the diffusion coefficientD we have to derive
Fick’s law. Let us keep constant the discrete values ofDx
[ l andDt[t, wherel andt are the lattice constant~mean
free path! and jump time~mean collision time!, respectively.
The velocityc[Dx/Dt5 l /t becomes a constant too. Nex
consider the first row in Eq.~2! for all P(x6Dx, t6Dt).
After a first order Taylor series expansion in both variab
around (x,t) we may rewrite such an equation as
4884 © 1997 The American Physical Society
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]P1

]t
1tc

]P1

]x
5

r

t
~P22P1!. ~3!

Next, from Eq. ~2!, the second row can also be similar
expanded, namely,

]P2

]t
2tc

]P2

]x
5

r

t
~P12P2!. ~4!

Subtracting Eq.~4! from Eq. ~3! and substituting the prob
abilities (P1 ,P2) for a new set (r,J) wherer[P11P2 is
the mass concentration, andJ[c(P12P2) is the diffusion
current, we get, after some simplifications, that

J52c2t
t

2r

]r

]x
2

t

2r

]J

]t
[2D

]r

]x
2u

]J

]t
. ~5!

Equation~5!, which describes a classical mesoscopic dif
sion current, is called the Maxwell-Cattaneo relation in t
literature @6,7#. The mathematical hallmark of mesoscop
diffusion is the substitution of Fick’s law by the Maxwel
Cattaneo relation.

By inspection, the first term in the right hand side of E
~5! is just Fick’s law, and the diffusion coefficient is give
by

D5c2t
t

2r
5cl

t

2r
. ~6!

Equation~6! looks very similar to the one reported by La
dauer. The difference is that Eq.~6! is local, that is, it has
microscopicscattering coefficients (t,r ) due to scattering
with individual atoms in the lattice, and Landauer’s equat
~1! has coefficients (T,R) of the whole solid. The ratiot/r
~Landauer’s resistance! has only a technical meaning and
not a physically accessible quantity. However, for aninco-
herentprocess~we add probabilities not amplitudes!, the mi-
croscopic coefficients (t,r ) are easily related to the meso
scopic coefficients (T,R) of a sample made of a sequence
N incoherentscatterers with a total lengthL[Nl, by

T5
t

t1Nr
, R5

Nr

t1Nr
. ~7!

Taking the ratio of both equations~7!, we getNT/R5t/r .
Substituting this ratio into Eq.~6!, we have

D5c~Nl !
T

2R
5cL

T

2R
, ~8!

Eq. ~8! is the exact Landauer equation, and there was ab
lutely nothing quantum going on there.

Since the Maxwell-Cattaneo relation~5! substitutes Fick’s
law, it is very important to notice that mesoscopic diffusi
is associated to a diffusion process which is described
very small time regime~the mesoscopic regime!. Indeed, Eq.
~5! describes a diffusive current with a relaxation timeu
[t/2r . In the long-time limit (t@u) the Maxwell-Cattaneo
relation relaxes into Fick’s law and we recover the hydrod
namic regime~in agreement with the central limit theorem!.
Therefore Landauer’s diffusion coefficient~8! is associated
to a classical mesoscopic diffusion process which isnot de-
-
e

.

n

f

o-

a

-

scribed by the usual hydrodynamic diffusion equati
]r/]t5D]2r/]x2. In fact, it can be proved that in the wea
scattering limit (t,r )→(1,0), (t,l )→(0,0) keeping constants
l /t5c andt/r 52u, then the classical mesoscopic diffusio
regime is described by the telegrapher equation@5#.

1

c2

]2r

]t2 1
1

D

]r

]t
5

]2r

]x2 , D[c2u. ~9!

This equation can be obtained by combining the conse
tion of mass law with the Maxwell-Cattaneo relation. Th
hyperbolic diffusion equation~9! describes at all times a
finite-velocitypropagation of density signals, in striking con
trast with the infinite speed of signals that the hydrodynam
solution allows.

IV. COMMENTS

The origin of the confusion about the quantum nature
Landauer’s diffusion coefficient has at least two sourc
first, in Landauer’s original derivation in Ref.@1# explicit
mention of the wordwave functionfor the reflected and
transmitted densities is made. What is more, Landauer
plicitly states that those densities are calculated at a dista
of severalwavelengthsof the solid to avoidinterferenceef-
fects. So, a casual reader may get the wrong impression
a quantum calculation was carried out, and the derived
fusion coefficientD in Eq. ~1! has to be a quantum resul
Second, and more important, is Landauer’s brilliant calcu
tion of the single-channel conductance

g5
e2

p\

T

R
. ~10!

To get Eq.~10! Landauer used the Einstein relation betwe
conductivity and diffusion@1#,

s5
ne2

kBT
D, ~11!

wherene2/kBT was derived, for conduction electrons, with
full quantum theory, and the diffusion coefficientD was just
substituted from the classical Eq.~1!. The validity of Eq.
~10! has been independently confirmed several times us
quantum linear response theory@8–10#. The confusion
comes, then, from the fact that if Eq.~10! is a valid quantum
result, therefore, the diffusion coefficientD used in Eq.~11!
has to be also a valid coherent quantum result. One c
example of this confusion can be seen in the excellent rev
article of Beenakker and van Houten@11#. Describing ballis-
tic transport and the Landauer formula they mention ‘‘W
will discuss corrections to the classical Drude conductiv
that follow from correlations in the diffusion process due
quantum interference’’~p. 22, Ref.@11#!.

On the other hand, the knowledge that Landauer’s dif
sion coefficient, given by Eq.~1!, is a classical result is no
entirely new in the literature. Beginning with Landauer
original discussion presented in Ref.@1#, where the incoher-
ence of his derivation is self-evident, this subject has b
repeatedly suggested several times:~i! The Landauer and
Büttiker revision of the problem of a sequence ofN incoher-
ent barriers@12#. They calculated a classical transmissi
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and reflection diffusion probabilities (T,R) using a classica
technique similar to persistent random walk presented in
Sec. II. They used the steady stateP1( i ,t)5P1( i ) and
P2( i ,t)5P2( i ), with emphasis on the caser 5t50.5, to cal-
culate the electrical resistanceR5(p\/e2)R/T and the dif-
fusive traversal timetT5(L/3c)R/T. ~ii ! The same classica
ideas are used by Landauer to calculate the resistanc
planar barriers@13#. ~iii ! Laikhtman and Luryi made use o
the Boltzmann equation to calculate the resistance, du
quantum reflection, of a planar heterostructure interface
three-dimensional bulk systems@14#. In fact, the interface
boundary condition they used†Eq. ~10! of Ref. @14#‡ is just,
once again, the steady-state case of our PRW.~iv! Kunze
treats the transport problem through a planar barrier us
classical kinetic equations@15#.

V. CONCLUSIONS

Both classical and quantum mechanical approaches
to the same 1D Landauer diffusion coefficient Eq.~6! with
alk

ll
ur

of

to
in

g

ad

the well-knownt/2r expression. This suggests that, in a tim
dependent quantum diffusion current, Fick’s law must be
incoherentcontribution. In fact, it can be proved that th
whole Maxwell-Cattaneo relation Eq.~5! is the incoherent
contribution@16#. Clearly, the time dependent quantum d
fusion current also has an interference term which is intrin
to the quantum wave description

Jquan~x,t !5Jinco~x,t !1Jinter~x,t !

52D
]ucu2

]x
2u

]Jquan

]t
1Jinter~c,]c/]x!.

~12!

Therefore as far as Fick’s law is concerned, being an in
herent result, any suitable incoherent~classical! theory such
as a Boltzmann or a master equation will give the same
fusion coefficient without the burden of quantum calcu
tions.
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